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3.1 The Cofactor Expansion

In Section 2.4 we defined the determinant of a 2×2 matrix A =

[
a b
c d

]
as follows:1

det A =

∣∣∣∣ a b
c d

∣∣∣∣= ad −bc

and showed (in Example 2.4.4) that A has an inverse if and only if det A 6= 0. One objective of this
chapter is to do this for any square matrix A. There is no difficulty for 1×1 matrices: If A = [a],
we define det A = det [a] = a and note that A is invertible if and only if a 6= 0.

If A is 3×3 and invertible, we look for a suitable definition of det A by trying to carry A to the
identity matrix by row operations. The first column is not zero (A is invertible); suppose the (1,
1)-entry a is not zero. Then row operations give

A =

 a b c
d e f
g h i

→

 a b c
ad ae a f
ag ah ai

→

 a b c
0 ae−bd a f − cd
0 ah−bg ai− cg

=

 a b c
0 u a f − cd
0 v ai− cg


where u = ae− bd and v = ah− bg. Since A is invertible, one of u and v is nonzero (by Example
2.4.11); suppose that u 6= 0. Then the reduction proceeds

A →

 a b c
0 u a f − cd
0 v ai− cg

→

 a b c
0 u a f − cd
0 uv u(ai− cg)

→

 a b c
0 u a f − cd
0 0 w


where w = u(ai− cg)− v(a f − cd) = a(aei+b f g+ cdh− ceg−a f h−bdi). We define

det A = aei+b f g+ cdh− ceg−a f h−bdi (3.1)

and observe that det A 6= 0 because a det A = w 6= 0 (is invertible).
To motivate the definition below, collect the terms in Equation 3.1 involving the entries a, b,

and c in row 1 of A:

det A =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣= aei+b f g+ cdh− ceg−a f h−bdi

= a(ei− f h)−b(di− f g)+ c(dh− eg)

= a
∣∣∣∣ e f

h i

∣∣∣∣−b
∣∣∣∣ d f

g i

∣∣∣∣+ c
∣∣∣∣ d e

g h

∣∣∣∣
This last expression can be described as follows: To compute the determinant of a 3× 3 matrix
A, multiply each entry in row 1 by a sign times the determinant of the 2× 2 matrix obtained by
deleting the row and column of that entry, and add the results. The signs alternate down row 1,
starting with +. It is this observation that we generalize below.

1Determinants are commonly written |A|= det A using vertical bars. We will use both notations.
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Example 3.1.1

det

 2 3 7
−4 0 6

1 5 0

= 2
∣∣∣∣ 0 6

5 0

∣∣∣∣−3
∣∣∣∣ −4 6

1 0

∣∣∣∣+7
∣∣∣∣ −4 0

1 5

∣∣∣∣
= 2(−30)−3(−6)+7(−20)
=−182

This suggests an inductive method of defining the determinant of any square matrix in terms of
determinants of matrices one size smaller. The idea is to define determinants of 3×3 matrices in
terms of determinants of 2×2 matrices, then we do 4×4 matrices in terms of 3×3 matrices, and
so on.

To describe this, we need some terminology.

Definition 3.1 Cofactors of a Matrix
Assume that determinants of (n−1)× (n−1) matrices have been defined. Given the n×n
matrix A, let

Ai j denote the (n−1)× (n−1) matrix obtained from A by deleting row i and column j.

Then the (i, j)-cofactor ci j(A) is the scalar defined by

ci j(A) = (−1)i+ j det (Ai j)

Here (−1)i+ j is called the sign of the (i, j)-position.

The sign of a position is clearly 1 or −1, and the following diagram is useful for remembering it:
+ − + − ·· ·
− + − + · · ·
+ − + − ·· ·
− + − + · · ·
... ... ... ...


Note that the signs alternate along each row and column with + in the upper left corner.

Example 3.1.2

Find the cofactors of positions (1, 2), (3, 1), and (2, 3) in the following matrix.

A =

 3 −1 6
5 2 7
8 9 4
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Solution. Here A12 is the matrix
[

5 7
8 4

]
that remains when row 1 and column 2 are

deleted. The sign of position (1, 2) is (−1)1+2 =−1 (this is also the (1, 2)-entry in the sign
diagram), so the (1, 2)-cofactor is

c12(A) = (−1)1+2
∣∣∣∣ 5 7

8 4

∣∣∣∣= (−1)(5 ·4−7 ·8) = (−1)(−36) = 36

Turning to position (3, 1), we find

c31(A) = (−1)3+1A31 = (−1)3+1
∣∣∣∣ −1 6

2 7

∣∣∣∣= (+1)(−7−12) =−19

Finally, the (2, 3)-cofactor is

c23(A) = (−1)2+3A23 = (−1)2+3
∣∣∣∣ 3 −1

8 9

∣∣∣∣= (−1)(27+8) =−35

Clearly other cofactors can be found—there are nine in all, one for each position in the
matrix.

We can now define det A for any square matrix A

Definition 3.2 Cofactor expansion of a Matrix

Assume that determinants of (n−1)× (n−1) matrices have been defined. If A =
[
ai j

]
is

n×n define
det A = a11c11(A)+a12c12(A)+ · · ·+a1nc1n(A)

This is called the cofactor expansion of det A along row 1.

It asserts that det A can be computed by multiplying the entries of row 1 by the corresponding
cofactors, and adding the results. The astonishing thing is that det A can be computed by taking
the cofactor expansion along any row or column: Simply multiply each entry of that row or column
by the corresponding cofactor and add.

Theorem 3.1.1: Cofactor Expansion Theorem2

The determinant of an n×n matrix A can be computed by using the cofactor expansion
along any row or column of A. That is det A can be computed by multiplying each entry of
the row or column by the corresponding cofactor and adding the results.

The proof will be given in Section ??.

2The cofactor expansion is due to Pierre Simon de Laplace (1749–1827), who discovered it in 1772 as part of
a study of linear differential equations. Laplace is primarily remembered for his work in astronomy and applied
mathematics.
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Example 3.1.3

Compute the determinant of A =

 3 4 5
1 7 2
9 8 −6

.

Solution. The cofactor expansion along the first row is as follows:

det A = 3c11(A)+4c12(A)+5c13(A)

= 3
∣∣∣∣ 7 2

8 −6

∣∣∣∣−4
∣∣∣∣ 1 2

9 −6

∣∣∣∣+3
∣∣∣∣ 1 7

9 8

∣∣∣∣
= 3(−58)−4(−24)+5(−55)
=−353

Note that the signs alternate along the row (indeed along any row or column). Now we
compute det A by expanding along the first column.

det A = 3c11(A)+1c21(A)+9c31(A)

= 3
∣∣∣∣ 7 2

8 −6

∣∣∣∣− ∣∣∣∣ 4 5
8 −6

∣∣∣∣+9
∣∣∣∣ 4 5

7 2

∣∣∣∣
= 3(−58)− (−64)+9(−27)
=−353

The reader is invited to verify that det A can be computed by expanding along any other
row or column.

The fact that the cofactor expansion along any row or column of a matrix A always gives the
same result (the determinant of A) is remarkable, to say the least. The choice of a particular row
or column can simplify the calculation.

Example 3.1.4

Compute det A where A =


3 0 0 0
5 1 2 0
2 6 0 −1

−6 3 1 0

.

Solution. The first choice we must make is which row or column to use in the cofactor
expansion. The expansion involves multiplying entries by cofactors, so the work is
minimized when the row or column contains as many zero entries as possible. Row 1 is a
best choice in this matrix (column 4 would do as well), and the expansion is

det A = 3c11(A)+0c12(A)+0c13(A)+0c14(A)

= 3

∣∣∣∣∣∣
1 2 0
6 0 −1
3 1 0

∣∣∣∣∣∣
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This is the first stage of the calculation, and we have succeeded in expressing the
determinant of the 4×4 matrix A in terms of the determinant of a 3×3 matrix. The next
stage involves this 3×3 matrix. Again, we can use any row or column for the cofactor
expansion. The third column is preferred (with two zeros), so

det A = 3
(

0
∣∣∣∣ 6 0

3 1

∣∣∣∣− (−1)
∣∣∣∣ 1 2

3 1

∣∣∣∣+0
∣∣∣∣ 1 2

6 0

∣∣∣∣)
= 3[0+1(−5)+0]
=−15

This completes the calculation.

Computing the determinant of a matrix A can be tedious. For example, if A is a 4×4 matrix,
the cofactor expansion along any row or column involves calculating four cofactors, each of which
involves the determinant of a 3×3 matrix. And if A is 5×5, the expansion involves five determinants
of 4×4 matrices! There is a clear need for some techniques to cut down the work.3

The motivation for the method is the observation (see Example 3.1.4) that calculating a deter-
minant is simplified a great deal when a row or column consists mostly of zeros. (In fact, when a
row or column consists entirely of zeros, the determinant is zero—simply expand along that row or
column.)

Recall next that one method of creating zeros in a matrix is to apply elementary row operations
to it. Hence, a natural question to ask is what effect such a row operation has on the determinant of
the matrix. It turns out that the effect is easy to determine and that elementary column operations
can be used in the same way. These observations lead to a technique for evaluating determinants
that greatly reduces the labour involved. The necessary information is given in Theorem 3.1.2.

Theorem 3.1.2
Let A denote an n×n matrix.

1. If A has a row or column of zeros, det A = 0.

2. If two distinct rows (or columns) of A are interchanged, the determinant of the
resulting matrix is − det A.

3. If a row (or column) of A is multiplied by a constant u, the determinant of the
resulting matrix is u(det A).

4. If two distinct rows (or columns) of A are identical, det A = 0.

3If A =

 a b c
d e f
g h i

 we can calculate det A by considering

 a b c a b
d e f d e
g h i g h

 obtained from A by adjoining

columns 1 and 2 on the right. Then det A = aei+b f g+cdh−ceg−a f h−bdi, where the positive terms aei, b f g, and
cdh are the products down and to the right starting at a, b, and c, and the negative terms ceg, a f h, and bdi are the
products down and to the left starting at c, a, and b. Warning: This rule does not apply to n×n matrices where
n > 3 or n = 2.
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5. If a multiple of one row of A is added to a different row (or if a multiple of a column is
added to a different column), the determinant of the resulting matrix is det A.

Proof. We prove properties 2, 4, and 5 and leave the rest as exercises.
Property 2. If A is n×n, this follows by induction on n. If n = 2, the verification is left to the

reader. If n > 2 and two rows are interchanged, let B denote the resulting matrix. Expand det A
and det B along a row other than the two that were interchanged. The entries in this row are the
same for both A and B, but the cofactors in B are the negatives of those in A (by induction) because
the corresponding (n−1)× (n−1) matrices have two rows interchanged. Hence, det B =− det A, as
required. A similar argument works if two columns are interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by interchanging them.
Then B = A, so det B = detA. But det B =− det A by property 2, so det A = det B = 0. Again, the
same argument works for columns.

Property 5. Let B be obtained from A =
[
ai j

]
by adding u times row p to row q. Then row q of

B is

(aq1 +uap1, aq2 +uap2, . . . , aqn +uapn)

The cofactors of these elements in B are the same as in A (they do not involve row q): in symbols,
cq j(B) = cq j(A) for each j. Hence, expanding B along row q gives

det A = (aq1 +uap1)cq1(A)+(aq2 +uap2)cq2(A)+ · · ·+(aqn +uapn)cqn(A)
= [aq1cq1(A)+aq2cq2(A)+ · · ·+aqncqn(A)]+u[ap1cq1(A)+ap2cq2(A)+ · · ·+apncqn(A)]
= det A+u det C

where C is the matrix obtained from A by replacing row q by row p (and both expansions are along
row q). Because rows p and q of C are equal, det C = 0 by property 4. Hence, det B = detA, as
required. As before, a similar proof holds for columns.

To illustrate Theorem 3.1.2, consider the following determinants.
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∣∣∣∣∣∣
3 −1 2
2 5 1
0 0 0

∣∣∣∣∣∣= 0 (because the last row consists of zeros)

∣∣∣∣∣∣
3 −1 5
2 8 7
1 2 −1

∣∣∣∣∣∣=−

∣∣∣∣∣∣
5 −1 3
7 8 2

−1 2 1

∣∣∣∣∣∣ (because two columns are interchanged)

∣∣∣∣∣∣
8 1 2
3 0 9
1 2 −1

∣∣∣∣∣∣= 3

∣∣∣∣∣∣
8 1 2
1 0 3
1 2 −1

∣∣∣∣∣∣ (because the second row of the matrix on the left is 3
times the second row of the matrix on the right)∣∣∣∣∣∣

2 1 2
4 0 4
1 3 1

∣∣∣∣∣∣= 0 (because two columns are identical)

∣∣∣∣∣∣
2 5 2

−1 2 9
3 1 1

∣∣∣∣∣∣=
∣∣∣∣∣∣

0 9 20
−1 2 9

3 1 1

∣∣∣∣∣∣ (because twice the second row of the matrix on the left
was added to the first row)

The following four examples illustrate how Theorem 3.1.2 is used to evaluate determinants.

Example 3.1.5

Evaluate det A when A =

 1 −1 3
1 0 −1
2 1 6

.

Solution. The matrix does have zero entries, so expansion along (say) the second row
would involve somewhat less work. However, a column operation can be used to get a zero
in position (2, 3)—namely, add column 1 to column 3. Because this does not change the
value of the determinant, we obtain

det A =

∣∣∣∣∣∣
1 −1 3
1 0 −1
2 1 6

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 −1 4
1 0 0
2 1 8

∣∣∣∣∣∣=−
∣∣∣∣ −1 4

1 8

∣∣∣∣= 12

where we expanded the second 3×3 matrix along row 2.

Example 3.1.6

If det

 a b c
p q r
x y z

= 6, evaluate det A where A =

 a+ x b+ y c+ z
3x 3y 3z
−p −q −r

.
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Solution. First take common factors out of rows 2 and 3.

det A = 3(−1) det

 a+ x b+ y c+ z
x y z
p q r


Now subtract the second row from the first and interchange the last two rows.

det A =−3 det

 a b c
x y z
p q r

= 3 det

 a b c
p q r
x y z

= 3 ·6 = 18

The determinant of a matrix is a sum of products of its entries. In particular, if these entries
are polynomials in x, then the determinant itself is a polynomial in x. It is often of interest to
determine which values of x make the determinant zero, so it is very useful if the determinant is
given in factored form. Theorem 3.1.2 can help.

Example 3.1.7

Find the values of x for which det A = 0, where A =

 1 x x
x 1 x
x x 1

.

Solution. To evaluate det A, first subtract x times row 1 from rows 2 and 3.

det A =

∣∣∣∣∣∣
1 x x
x 1 x
x x 1

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 x x
0 1− x2 x− x2

0 x− x2 1− x2

∣∣∣∣∣∣=
∣∣∣∣ 1− x2 x− x2

x− x2 1− x2

∣∣∣∣
At this stage we could simply evaluate the determinant (the result is 2x3 −3x2 +1). But
then we would have to factor this polynomial to find the values of x that make it zero.
However, this factorization can be obtained directly by first factoring each entry in the
determinant and taking a common factor of (1− x) from each row.

det A =

∣∣∣∣ (1− x)(1+ x) x(1− x)
x(1− x) (1− x)(1+ x)

∣∣∣∣= (1− x)2
∣∣∣∣ 1+ x x

x 1+ x

∣∣∣∣
= (1− x)2(2x+1)

Hence, det A = 0 means (1− x)2(2x+1) = 0, that is x = 1 or x =−1
2 .
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Example 3.1.8

If a1, a2, and a3 are given show that

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= (a3 −a1)(a3 −a2)(a2 −a1)

Solution. Begin by subtracting row 1 from rows 2 and 3, and then expand along column 1:

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= det

 1 a1 a2
1

0 a2 −a1 a2
2 −a2

1
0 a3 −a1 a2

3 −a2
1

=

[
a2 −a1 a2

2 −a2
1

a3 −a1 a2
3 −a2

1

]

Now (a2 −a1) and (a3 −a1) are common factors in rows 1 and 2, respectively, so

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= (a2 −a1)(a3 −a1) det
[

1 a2 +a1
1 a3 +a1

]
= (a2 −a1)(a3 −a1)(a3 −a2)

The matrix in Example 3.1.8 is called a Vandermonde matrix, and the formula for its determinant
can be generalized to the n×n case (see Theorem 3.2.7).

If A is an n×n matrix, forming uA means multiplying every row of A by u. Applying property
3 of Theorem 3.1.2, we can take the common factor u out of each row and so obtain the following
useful result.

Theorem 3.1.3
If A is an n×n matrix, then det (uA) = un det A for any number u.

The next example displays a type of matrix whose determinant is easy to compute.

Example 3.1.9

Evaluate det A if A =


a 0 0 0
u b 0 0
v w c 0
x y z d

.

Solution. Expand along row 1 to get det A = a

∣∣∣∣∣∣
b 0 0
w c 0
y z d

∣∣∣∣∣∣. Now expand this along the top

row to get det A = ab
∣∣∣∣ c 0

z d

∣∣∣∣= abcd, the product of the main diagonal entries.
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A square matrix is called a lower triangular matrix if all entries above the main diagonal
are zero (as in Example 3.1.9). Similarly, an upper triangular matrix is one for which all entries
below the main diagonal are zero. A triangular matrix is one that is either upper or lower
triangular. Theorem 3.1.4 gives an easy rule for calculating the determinant of any triangular
matrix. The proof is like the solution to Example 3.1.9.

Theorem 3.1.4
If A is a square triangular matrix, then det A is the product of the entries on the main
diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a routine matter to carry a matrix to
triangular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and the theorem
gives an easy method for computing their determinants. This dovetails with Example 2.4.11.

Theorem 3.1.5

Consider matrices
[

A X
0 B

]
and

[
A 0
Y B

]
in block form, where A and B are square

matrices. Then

det
[

A X
0 B

]
= det A det B and det

[
A 0
Y B

]
= det A det B

Proof. Write T = det
[

A X
0 B

]
and proceed by induction on k where A is k × k. If k = 1, it is

the cofactor expansion along column 1. In general let Si(T ) denote the matrix obtained from T by
deleting row i and column 1. Then the cofactor expansion of det T along the first column is

det T = a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T )) (3.2)

where a11, a21, · · · , ak1 are the entries in the first column of A. But Si(T ) =
[

Si(A) Xi
0 B

]
for each

i = 1, 2, · · · , k, so det (Si(T )) = det (Si(A)) · det B by induction. Hence, Equation 3.2 becomes

det T = {a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T ))} det B
= {det A} det B

as required. The lower triangular case is similar.
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Example 3.1.10

det


2 3 1 3
1 −2 −1 1
0 1 0 1
0 4 0 1

=−

∣∣∣∣∣∣∣∣
2 1 3 3
1 −1 −2 1
0 0 1 1
0 0 4 1

∣∣∣∣∣∣∣∣=−
∣∣∣∣ 2 1

1 −1

∣∣∣∣ ∣∣∣∣ 1 1
4 1

∣∣∣∣=−(−3)(−3) =−9

The next result shows that det A is a linear transformation when regarded as a function of a
fixed column of A. The proof is Exercise 3.1.21.

Theorem 3.1.6
Given columns c1, · · · , c j−1, c j+1, · · · , cn in Rn, define T : Rn → R by

T (x) = det
[

c1 · · · c j−1 x c j+1 · · · cn
]

for all x in Rn

Then, for all x and y in Rn and all a in R,

T (x+y) = T (x)+T (y) and T (ax) = aT (x)

Exercises for 3.1

Exercise 3.1.1 Compute the determinants of the
following matrices.

[
2 −1
3 2

]
a)

[
6 9
8 12

]
b)

[
a2 ab
ab b2

]
c)

[
a+1 a

a a−1

]
d)

[
cosθ −sinθ

sinθ cosθ

]
e)

 2 0 −3
1 2 5
0 3 0

f)

 1 2 3
4 5 6
7 8 9

g)

 0 a 0
b c d
0 e 0

h)

 1 b c
b c 1
c 1 b

i)

 0 a b
a 0 c
b c 0

j)


0 1 −1 0
3 0 0 2
0 1 2 1
5 0 0 7

k)


1 0 3 1
2 2 6 0

−1 0 −3 1
4 1 12 0

l)


3 1 −5 2
1 3 0 1
1 0 5 2
1 1 2 −1

m)


4 −1 3 −1
3 1 0 2
0 1 2 2
1 2 −1 1

n)


1 −1 5 5
3 1 2 4

−1 −3 8 0
1 1 2 −1

o)


0 0 0 a
0 0 b p
0 c q k
d s t u

p)

b. 0

d. −1

f. −39
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h. 0

j. 2abc

l. 0

n. −56

p. abcd

Exercise 3.1.2 Show that det A = 0 if A has a row
or column consisting of zeros.

Exercise 3.1.3 Show that the sign of the position
in the last row and the last column of A is always
+1.

Exercise 3.1.4 Show that det I = 1 for any identity
matrix I.

Exercise 3.1.5 Evaluate the determinant of each
matrix by reducing it to upper triangular form. 1 −1 2

3 1 1
2 −1 3

a)

 −1 3 1
2 5 3
1 −2 1

b)


−1 −1 1 0

2 1 1 3
0 1 1 2
1 3 −1 2

c)


2 3 1 1
0 2 −1 3
0 5 1 1
1 1 2 5

d)

b. −17

d. 106

Exercise 3.1.6 Evaluate by cursory inspection:

a. det

 a b c
a+1 b+1 c+1
a−1 b−1 c−1



b. det

 a b c
a+b 2b c+b

2 2 2



b. 0

Exercise 3.1.7 If det

 a b c
p q r
x y z

=−1 compute:

a. det

 −x −y −z
3p+a 3q+b 3r+ c

2p 2q 2r



b. det

 −2a −2b −2c
2p+ x 2q+ y 2r+ z

3x 3y 3z



b. 12

Exercise 3.1.8 Show that:

a. det

 p+ x q+ y r+ z
a+ x b+ y c+ z
a+ p b+q c+ r

= 2 det

 a b c
p q r
x y z



b. det

 2a+ p 2b+q 2c+ r
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c

= 9 det

 a b c
p q r
x y z



b. det

 2a+ p 2b+q 2c+ r
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c


= 3 det

 a+ p+ x b+q+ y c+ r+ z
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c


= 3 det

 a+ p+ x b+q+ y c+ r+ z
p−a q−b r− c
x− p y−q z− r


= 3 det

 3x 3y 3z
p−a q−b r− c
x− p y−q z− r

 · · ·

Exercise 3.1.9 In each case either prove the state-
ment or give an example showing that it is false:

a. det (A+B) = det A+ det B.

b. If det A = 0, then A has two equal rows.

c. If A is 2×2, then det (AT ) = det A.

d. If R is the reduced row-echelon form of A, then
det A = det R.

e. If A is 2×2, then det (7A) = 49 det A.
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f. det (AT ) =− det A.

g. det (−A) =− det A.

h. If det A = det B where A and B are the same
size, then A = B.

b. False. A =

[
1 1
2 2

]

d. False. A =

[
2 0
0 1

]
→ R =

[
1 0
0 1

]

f. False. A =

[
1 1
0 1

]

h. False. A =

[
1 1
0 1

]
and B =

[
1 0
1 1

]

Exercise 3.1.10 Compute the determinant of each
matrix, using Theorem 3.1.5.

a.


1 −1 2 0 −2
0 1 0 4 1
1 1 5 0 0
0 0 0 3 −1
0 0 0 1 1



b.


1 2 0 3 0

−1 3 1 4 0
0 0 2 1 1
0 0 −1 0 2
0 0 3 0 1



b. 35

Exercise 3.1.11 If det A = 2, det B = −1, and
det C = 3, find:

det

 A X Y
0 B Z
0 0 C

a) det

 A 0 0
X B 0
Y Z C

b)

det

 A X Y
0 B 0
0 Z C

c) det

 A X 0
0 B 0
Y Z C

d)

b. −6

d. −6

Exercise 3.1.12 If A has three columns with only
the top two entries nonzero, show that det A = 0.

Exercise 3.1.13

a. Find det A if A is 3×3 and det (2A) = 6.

b. Under what conditions is det (−A) = det A?

Exercise 3.1.14 Evaluate by first adding all other
rows to the first row.

a. det

 x−1 2 3
2 −3 x−2
−2 x −2



b. det

 x−1 −3 1
2 −1 x−1
−3 x+2 −2



b. −(x−2)(x2 +2x−12)

Exercise 3.1.15

a. Find b if det

 5 −1 x
2 6 y

−5 4 z

= ax+by+ cz.

b. Find c if det

 2 x −1
1 y 3

−3 z 4

= ax+by+ cz.

b. −7

Exercise 3.1.16 Find the real numbers x and y
such that det A = 0 if:

A =

 0 x y
y 0 x
x y 0

a) A=

 1 x x
−x −2 x
−x −x −3

b)
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A =


1 x x2 x3

x x2 x3 1
x2 x3 1 x
x3 1 x x2

c)

A =


x y 0 0
0 x y 0
0 0 x y
y 0 0 x

d)

b. ±
√

6
2

d. x =±y

Exercise 3.1.17 Show that

det


0 1 1 1
1 0 x x
1 x 0 x
1 x x 0

=−3x2

Exercise 3.1.18 Show that

det


1 x x2 x3

a 1 x x2

p b 1 x
q r c 1

= (1−ax)(1−bx)(1− cx).

Exercise 3.1.19
Given the polynomial p(x) = a+ bx+ cx2 + dx3 + x4,

the matrix C =


0 1 0 0
0 0 1 0
0 0 0 1

−a −b −c −d

 is called the

companion matrix of p(x). Show that det (xI −
C) = p(x).

Exercise 3.1.20 Show that

det

 a+ x b+ x c+ x
b+ x c+ x a+ x
c+ x a+ x b+ x


= (a+b+ c+3x)[(ab+ac+bc)− (a2 +b2 + c2)]

Exercise 3.1.21 . Prove Theorem 3.1.6.
[Hint: Expand the determinant along column j.]

Let x =


x1
x2
...

xn

, y =


y1
y2
...

yn

 and A =

[
c1 · · · x+y · · · cn

]
where x + y is in col-

umn j. Expanding det A along column j (the one

containing x+y):

T (x+y) = det A =
n

∑
i=1

(xi + yi)ci j(A)

=
n

∑
i=1

xici j(A)+
n

∑
i=1

yici j(A)

= T (x)+T (y)

Similarly for T (ax) = aT (x).

Exercise 3.1.22 Show that

det


0 0 · · · 0 a1
0 0 · · · a2 ∗
...

...
...

...
0 an−1 · · · ∗ ∗
an ∗ · · · ∗ ∗

= (−1)ka1a2 · · ·an

where either n = 2k or n = 2k+ 1, and ∗-entries are
arbitrary.

Exercise 3.1.23 By expanding along the first col-
umn, show that:

det



1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 1
1 0 0 0 · · · 0 1


= 1+(−1)n+1

if the matrix is n×n, n ≥ 2.

Exercise 3.1.24 Form matrix B from a matrix A
by writing the columns of A in reverse order. Express
det B in terms of det A.
If A is n× n, then det B = (−1)k det A where n = 2k
or n = 2k+1.

Exercise 3.1.25 Prove property 3 of Theo-
rem 3.1.2 by expanding along the row (or column)
in question.

Exercise 3.1.26 Show that the line through two
distinct points (x1, y1) and (x2, y2) in the plane has
equation

det

 x y 1
x1 y1 1
x2 y2 1

= 0

Exercise 3.1.27 Let A be an n×n matrix. Given
a polynomial p(x) = a0 +a1x+ · · ·+amxm, we write
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p(A) = a0I+a1A+ · · ·+amAm. For example, if p(x) =
2−3x+5x2, then
p(A) = 2I −3A+5A2. The characteristic polynomial
of A is defined to be cA(x) = det [xI − A], and the
Cayley-Hamilton theorem asserts that cA(A) = 0 for
any matrix A.

a. Verify the theorem for

i. A =

[
3 2
1 −1

]
ii. A=

 1 −1 1
0 1 0
8 2 2


b. Prove the theorem for A =

[
a b
c d

]
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